Considérations pratiques à l'égard de la vaccination contre la COVID-19 en Afrique

Clause de non-responsabilité

- Les produits médicaux non approuvés ou les utilisations non approuvées de produits médicaux approuvés peuvent être discutés par la faculté ; ces situations pouvant correspondre au statut d'approbation en vigueur dans une ou plusieurs juridictions
- USF Health et touchIME ont demandé à la faculté responsable de la présentation de veiller à communiquer toute référence faite à une utilisation sans étiquette ou non approuvée
- USF Health et touchIME ne cautionnent explicitement ou implicitement aucun produit non approuvé ou utilisation non approuvée en mentionnant ces produits ou utilisations dans les activités USF Health et touchIME
- USF Health et touchIME déclinent toute responsabilité pour toute erreur ou omission

* Une conversation entre :

Dre Christina Obiero

Chercheuse clinique Institut de recherche médicale du Kenya Kilifi, Kenya

Dr John Amuasi

Chef du département de la santé mondiale École de santé publique Université des sciences et technologies Kwame Nkrumah Kumasi, Ghana

Ordre du jour

Quels sont les bénéfices et risques de la vaccination contre la COVID-19?

Qu'est-ce qui empêche les gens de se faire vacciner?

Comment les professionnels de santé peuvent-ils contribuer à améliorer le taux de vaccination contre la COVID-19 ?

Quels sont les bénéfices et risques de la vaccination contre la COVID-19 ?

Dre Christina Obiero

Chercheuse clinique Institut de recherche médicale du Kenya Kilifi, Kenya

Les vaccins contre la COVID-19 ont fait l'objet d'études dans les populations africaines

Des données d'efficacité sont disponibles dans toute l'Afrique

Nigéria et Ghana	RWE (N=667)	AZD1222	Immunogénicité démontrée ¹	
Afrique du Sud	Phase IIIb (N=477 102)	Ad26.COV2.S	Réduction des décès et des hospitalisations ²	
Afrique du Sud	RWE (N=211 610 tests PCR)	BNT162b2	Hospitalisations réduites ³	
Afrique du Sud	RWE (N=162 637 tests PCR)	Ad26.COV2.S/ BNT162b2	Efficace contre les formes graves ⁴	
République du Congo	RWE (N=169)	BBIBP-CorV/ Ad26.COV2.S	Réponse anticorps confirmée ⁵	
Zambie	RWE (N=1 653)	Toute vaccination	Réduction de la mortalité en milieu hospitalier ⁶	

Une étude du monde réel a examiné les données d'innocuité des vaccins contre la COVID-19 en Afrique

Des taux similaires d'El ont été rapportés entre les hommes et les femmes⁷

Les EI les plus fréquemment rapportés relèvent des SOC « troubles généraux » et « manifestations au site d'administration » (35 % des EI signalés)⁷

Les maux de tête (11 %), la pyrexie (9 %) et les douleurs au site d'injection (8 %) sont les El les plus fréquemment signalés⁷

El, effet indésirable ; PCR, réaction en chaîne par polymérase ; RWE, preuves concrètes ; SOC, classe de systèmes d'organes.

^{1.} Abdullahi A, et al. Nat Commun. 2022;13:6131; 2. Bekker L-G, et al. Lancet. 2022;399:1141–53; 3. Collie S, et al. N Engl J Med. 2022;386:494–6;

^{4.} Gray G, et al. N Engl J Med. 2022;386:2243–5; 5. Batchi-Bouyou AL, et al. BMC Infect Dis. 2022;22:610; 6. Chanda D, et al. Open Forum Infect Dis. 2022;9:ofac469; 7. Ogar CK, et al. Drug Saf. 2023;doi:10.1007/s40264-023-01279-3.

. L'efficacité est comparable pour tous les types de vaccins

Vaccins les plus couramment utilisés en Afrique ^{1,2} (Données mises à jour le 2 février 2023)		Proportion E utilisée ¹	Efficacité contre le variant BA.5/omicron		
			Infection	Maladie sévère	
	Ad26.COV2.S (J&J)	36 %	33 %	57 %	
	BNT162b2 (Pfizer-BioNTech)	21 %	44 %	72 %	
	AZD1222/ChAdOx1 (AstraZeneca)	16 %	36 %	71 %	
	BBIBP-CorV (Sinopharm)	14 %	35 %	53 %	

^{1.} Africa CDC. COVID-19 vaccination. Disponible à l'adresse : https://africacdc.org/covid-19-vaccination/ (consulté le 22 février 2023);

^{2.} Loembé MM, Nkengasong JN. *Immunity*. 2021;54:1353–62; 3. Healthdata. COVID-19 Vaccine efficacy summary. Disponible à l'adresse: https://www.healthdata.org/covid/covid-19-vaccine-efficacy-summary (consulté le 28 février 2023).

La vaccination contre la COVID-19 est vitale pour les populations vulnérables

Personnes vivant avec le VIH

- Risque plus élevé de symptômes graves et de mortalité suite à une infection par la COVID-19¹
- Réponse neutralisante similaire aux personnes sans VIH après la vaccination²
- Pas de risque accru d'effets secondaires graves suite à la vaccination³

Femmes enceintes

- Risque accru de forme grave de la COVID-19, de mortinaissance, de pré-eclampsie, de césarienne, de naissance avant terme, après une infection à la COVID-19^{4,5}
- La vaccination n'augmente pas le risque d'issues défavorables ou d'El^{4,6}
- La vaccination maternelle offre une protection aux nouveau-nés⁷

Patients immunodéprimés

- Les infections sont la cause de mortalité la plus fréquente⁸
- Efficacité vaccinale généralement plus faible^{9,10}
- Peuvent nécessiter une protection supplémentaire⁹

Personnes âgées

- La mortalité liée à la COVID-19 augmente avec l'âge¹¹
- Peuvent se présenter différemment :
 ex. symptômes neurologiques ; fièvre moins fréquente par rapport aux personnes plus jeunes¹¹
- Diminution des réponses immunitaires suite à la vaccination¹²

El, effet indésirable ; VIH, virus de l'immunodéficience humaine.

1. Wang Y, et al. Front Immunol. 2022;13:864838; 2. Khan K, et al. Clin Infect Dis. 2022;75:e857-64; 3. Yang Y, Iwasaki A. Curr HIV/AIDS Rep. 2022;19:5-16;

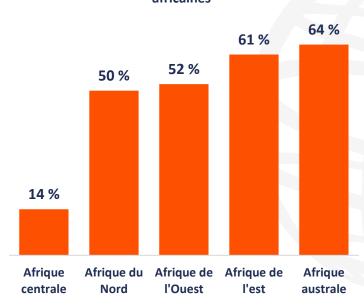
4. Kontovazainitis G-C, et al. *J Perinat Med*. 2023;doi: 10.1515/jpm-2022-0463; 5. Pathiranthna ML, et al. *Healthcare (Basel)*. 2022;10:203; 6. DeSilva M, et al. *N Engl J Med*. 2022;387:187–9; 7. Halasa NB, et al. *N Engl J Med*. 2022;387:109–19; 8. Sonani B, et al. *Clin Rheumatol*. 2021;40:797–8; 9. Di Fusco M, et al. *Expert Rev Vaccines*. 2022;21:435–51; 10. Marra AR, et al. *J Infect*. 2022;84:297–310; 11. Prendki V, et al. *Clin Microbiol Infect*. 2022;28:785–91;

12. Newman J, et al. Nat Microbiol. 2022;7:1180-8; 13. Afshar ZM, et al. Rev Med Virol. 2022;32:e2309.

Qu'est-ce qui empêche les gens de se faire vacciner ?

Dre Christina Obiero

Chercheuse clinique Institut de recherche médicale du Kenya


La couverture vaccinale contre la COVID-19 varie d'un pays africain à l'autre

Proportion de la population éligible ayant reçu une vaccination partielle¹

Données mises à jour le 5 février 2023

L'acceptation des vaccins varie selon les régions africaines²

Données de 2022

1. Centres africains pour la surveillance et la prévention des maladies. Vaccination contre la COVID-19. Disponible à l'adresse : https://africacdc.org/covid-19-vaccination/ (consulté le 13 mars 2023) ; 2. Njoga EO, et al. *Vaccines (Basel)*. 2022;10:1934.

Plusieurs facteurs conduisent à une faible couverture vaccinale en Afrique

Vecteurs de la réticence à la vaccination

Préoccupations à l'égard des vaccins

- Tests inadéquats¹
- Peur des effets secondaires¹
- Manque de confiance en l'efficacité¹
- Méfiance/suspicion envers les vaccins¹

Désinformation

- Mythes diffusés sur les réseaux sociaux²
- Mauvaise interprétation des données²
- Théories du complot¹

Autres facteurs conduisant à de faibles taux de vaccination

Facteurs sociopolitiques

- Rumeurs sur les vaccins¹
- Méfiance à l'égard des dirigeants politiques¹
- Instabilité politique¹

Inégalité de l'accès aux vaccins

- Offre faible, forte demande¹
- Vaccins achetés par les PRE¹
- Dons de vaccins périmés³

Politique gouvernementale

- Déni de la gravité de la COVID-19²
- Manque de clarté qui crée un doute sur les personnes concernées par la vaccination²

Défis logistiques

- Fabriqués à l'étranger⁴
- Besoins de stockage complexes⁴
- Disponible dans des lieux limités⁵

PRE, pays à revenu élevé.

4. Kritharis A, et al. Can J Chem Eng. 2022;100:1670-5; 5. Sulub S, Mohamed M. Vaccines (Basel). 2022;10:1076.

Comment les professionnels de santé peuvent-ils contribuer à améliorer le taux de vaccination contre la COVID-19?

Dre Christina Obiero

Chercheuse clinique Institut de recherche médicale du Kenya Kilifi, Kenya

L'épidémie d'Ebola offre un aperçu des défis pour les PS

2014

Épidémie d'Ebola, principalement en Guinée, au Liberia et en Sierra Leone¹

2016

Fin de l'épidémie : >28 000 infections ; >11 000 décès¹

Efforts de vaccination continus²

Pendant et après l'épidémie d'Ebola, des défis ont surgi pendant les efforts de vaccination :

Des défis sont apparus lors des essais du vaccin contre le virus Ebola³

Préoccupations concernant le vaccin étranger³
Problèmes de sécurité rencontrés par les équipes de réponse aux virus Ebola³

Niveaux élevés de méfiance à l'égard de l'équipe de vaccination et de surveillance⁴

Désinformation, par ex. origine de la maladie⁴ Rapports faisant état de violences à l'égard des PS⁴

Coût, attitude communautaire et risque perçu de la couverture vaccinale contre Ebola⁴

Besoin d'une approche personnalisée pour les campagnes futures⁴

Les mauvais réseaux routiers et le besoin de stockage spécialisé ralentissent le déploiement des vaccins⁵

Importance de l'infrastructure pour les campagnes futures⁵

La méfiance et la désinformation ont constitué des obstacles majeurs aux campagnes de vaccination contre Ebola⁴

PS, professionnel de santé.

- 1. Wolf J, et al. NPJ Vaccines. 2020;5:51; 2. Samarasekera U. Lancet Microbe. 2023;4:e139; 3. Henao-Restrepo AM, et al. Lancet. 2017;389:505–18;
- 4. Kpanake L, et al. Hum Vaccin Immunother. 2018;14:2391-6; 5. Jusu MO, et al. J Infect Dis. 2018;217:S48-S55.

Stratégies pour surmonter les défis clés du déploiement des vaccins

Manque de sensibilisation/ méfiance à l'égard des vaccins

- Partager les informations sur la production et l'approbation des vaccins¹
- Assurer une communication claire avec les dirigeants communautaires et le gouvernement¹
- Interagir avec le public localement pour renforcer la confiance de la communauté²
- Répondre rapidement aux préoccupations de la communauté pour établir des relations durables²

Mauvaise coordination entre les parties prenantes

- Interagir avec les parties prenantes très tôt avec une planification détaillée²
- Assurer la coordination entre les agences de santé, les agences gouvernementales et les partenaires internationaux²
- Assurer une stratégie de communication communautaire claire et cohérente²

La réticence, le scepticisme ou la résistance aux vaccins

- Adapter le déploiement pour répondre aux préoccupations et aux obstacles spécifiques à l'accès²
- Intégrer les campagnes de vaccination pour réduire le temps consacré par les communautés et les professionnels de santé²
- Recruter des PS locaux et impliquer des personnalités de confiance de la communauté^{2,3}

