Practical considerations for COVID-19 vaccination in Africa

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health and touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health and touchIME activities
- USF Health and touchIME accept no responsibility for errors or omissions

• A conversation between:

Dr Christina Obiero

Clinical Investigator Kenya Medical Research Institute Kilifi, Kenya

Dr John Amuasi

Head of Global Health Department School of Public Health Kwame Nkrumah University of Science and Technology Kumasi, Ghana

Agenda

What are the benefits and risks of COVID-19 vaccination?

What prevents people from getting vaccinated?

How can healthcare workers help to improve COVID-19 vaccine uptake?

What are the benefits and risks of COVID-19 vaccination?

COVID-19 vaccines have been studied in African populations

Efficacy data are available from across Africa						
Nigeria and Ghana	RWE (N=667)	AZD1222	Demonstrated immunogenicity ¹			
South Africa	Phase IIIb (N=477,102)	Ad26.COV2.S	Reduced deaths and hospitalization ²			
South Africa	RWE (N=211,610 PCR tests)	BNT162b2	Reduced hospitalization ³			
South Africa	RWE (N=162,637 PCR tests)	Ad26.COV2.S/ BNT162b2	Effective against severe disease ⁴			
Republic of the Congo	RWE (N=169)	BBIBP-CorV/ Ad26.COV2.S	Confirmed antibody response ⁵			
Zambia	RWE (N=1,653)	Any vaccination	Reduced in-hospital mortality ⁶			

A real-world study examined safety data of COVID-19 vaccines in Africa

Similar rates of AE reporting between males and females⁷

Most commonly reported AEs fall within 'general disorders' and 'administration site disorders' SOC (35% of reported AEs)⁷

Headache (11%), pyrexia (9%) and injection-site pain (8%) are the most commonly reported AEs⁷

AE, adverse event; PCR, polymerase chain reaction; RWE, real-world evidence; SOC, system organ class.

^{1.} Abdullahi A, et al. Nat Commun. 2022;13:6131; 2. Bekker L-G, et al. Lancet. 2022;399:1141–53; 3. Collie S, et al. N Engl J Med. 2022;386:494–6;

^{4.} Gray G, et al. *N Engl J Med*. 2022;386:2243–5; 5. Batchi-Bouyou AL, et al. *BMC Infect Dis*. 2022;22:610; 6. Chanda D, et al. *Open Forum Infect Dis*. 2022;9:ofac469; 7. Ogar CK, et al. *Drug Saf*. 2023;doi:10.1007/s40264-023-01279-3.

Efficacy is comparable across vaccine types

Most commonly used	Proportion used ¹	Efficacy against BA.5/omicron		
vaccines in Africa ^{1,2} (Data updated 02 February 2023)		Infection	Severe disease	
Ad26.COV2.S (J&J)	36%	33%	57%	
BNT162b2 (Pfizer-BioNTech)	21%	44%	72%	
AZD1222/ChAdOx1 (AstraZeneca)	16%	36%	71%	
BBIBP-CorV (Sinopharm)	14%	35%	53%	

^{1.} Africa CDC. COVID-19 vaccination. Available at: https://africacdc.org/covid-19-vaccination/ (accessed 22 February 2023); 2. Loembé MM, Nkengasong JN. *Immunity*. 2021;54:1353–62; 3. Healthdata. COVID-19 Vaccine efficacy summary. Available at: https://www.healthdata.org/covid/covid-19-vaccine-efficacy-summary (accessed 28 February 2023).

COVID-19 vaccination is vital in vulnerable populations

People living with HIV

- Higher risk of severe symptoms and mortality following COVID-19 infection¹
- Similar neutralizing response to people without HIV following vaccination²
- No increased risk of severe side effects following vaccination³

Pregnant womer

- Increased risk of severe COVID-19, still birth, pre-eclampsia, caesarean delivery, preterm birth, after COVID-19 infection^{4,5}
- Vaccination does not increase risk of adverse outcomes or AEs^{4,6}
- Maternal vaccination offers newborn protection⁷

Immunocompromised patients

- Infections are the most common cause of mortality⁸
- Vaccine efficacy generally lower^{9,10}
- May require further protection⁹

Elderly

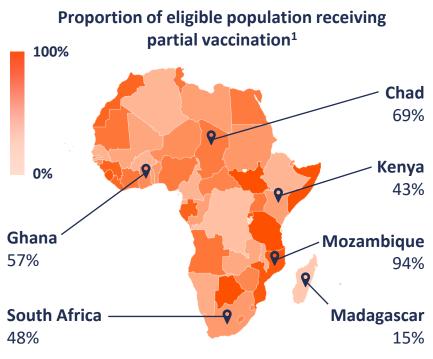
- COVID-19 mortality increases with age¹¹
- May present differently:
 e.g. neurological symptoms; fever less
 frequent vs younger people¹¹
- Waning immune responses following vaccination¹²

AE, adverse event; HIV, human immunodeficiency virus.

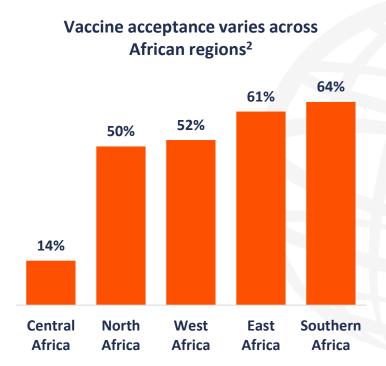
1. Wang Y, et al. Front Immunol. 2022;13:864838; 2. Khan K, et al. Clin Infect Dis. 2022;75:e857-64; 3. Yang Y, Iwasaki A. Curr HIV/AIDS Rep. 2022;19:5-16;

4. Kontovazainitis G-C, et al. *J Perinat Med*. 2023;doi: 10.1515/jpm-2022-0463; 5. Pathiranthna ML, et al. *Healthcare (Basel)*. 2022;10:203; 6. DeSilva M, et al. *N Engl J Med*. 2022;387:187–9; 7. Halasa NB, et al. *N Engl J Med*. 2022;387:109–19; 8. Sonani B, et al. *Clin Rheumatol*. 2021;40:797–8; 9. Di Fusco M, et al. *Expert Rev Vaccines*. 2022;21:435–51; 10. Marra AR, et al. *J Infect*. 2022;84:297–310; 11. Prendki V, et al. *Clin Microbiol Infect*. 2022;28:785–91; 12. Newman J, et al. *Nat Microbiol*. 2022;7:1180–8; 13. Afshar ZM, et al. *Rev Med Virol*. 2022;32:e2309.

What prevents people from getting vaccinated?


Dr Christina Obiero

Clinical Investigator Kenya Medical Research Institute Kilifi, Kenya



* COVID-19 vaccination uptake varies across African countries

Data from 2022

^{2.} Njoga EO, et al. Vaccines (Basel). 2022;10:1934.

Several drivers lead to low vaccine uptake in Africa

Drivers of vaccine hesitancy

Vaccine concerns

- Inadequate testing¹
- Fear of side effects¹
- Lack of confidence in efficacy¹
- Distrust/suspicion of vaccines¹

Misinformation

- Myths spread on social media²
- Data misinterpretation²
- Conspiracy theories¹

Other drivers leading to low vaccination rates

Socio-political drivers

- Vaccine hoarding¹
- Mistrust of political leaders¹
- Political instability¹

Vaccine inequality

- Low supply, high demand¹
- Vaccines bought up by HICs¹
- Donations of expired vaccines³

Government policy

- Denial of severity of COVID-19²
- Lack of clarity creating doubt over who vaccine is for²

Logistical challenges

- Manufactured overseas⁴
- Complex storage needs⁴
- Available at limited locations⁵

How can healthcare workers help to improve COVID-19 vaccine uptake?

Dr Christina Obiero

Clinical Investigator Kenya Medical Research Institute Kilifi, Kenya

Ebola outbreak offers insight into challenges for HCW

2014

Ebola outbreak, mainly in Guinea, Liberia and Sierra Leone¹

2016

Outbreak ended: >28,000 infections; >11,000 deaths¹

Vaccination efforts ongoing²

During and after the Ebola outbreak, challenges arose during vaccination efforts:

Challenges arose during Ebola virus vaccine trials³

Concerns about foreign vaccine³
Security issues faced by Ebola virus response teams³

High levels of mistrust surrounding vaccine and surveillance team⁴

Misinformation, e.g. disease origin⁴ Reports of violence towards HCW⁴

Cost, community attitude and perceived risk of Ebola affected vaccine uptake⁴

Need tailored approach for future campaigns⁴

Poor road networks and need for specialist storage slowed vaccine rollout⁵

Importance of infrastructure for future campaigns⁵

Distrust and misinformation were major barriers to Ebola vaccination campaigns⁴

HCW, healthcare worker.

1. Wolf J, et al. NPJ Vaccines. 2020;5:51; 2. Samarasekera U. Lancet Microbe. 2023;4:e139; 3. Henao-Restrepo AM, et al. Lancet. 2017;389:505–18; 4. Kpanake L, et al. Hum Vaccin Immunother. 2018;14:2391–6; 5. Jusu MO, et al. J Infect Dis. 2018;217:S48–S55.

* Strategies to overcome key vaccine rollout challenges

Lack of awareness/ mistrust of vaccines

- Share education on vaccine production and approval¹
- Ensure clear communication with community leaders and government¹
- Engage with public locally to strengthen community confidence²
- Address community concerns quickly to build sustainable relationships²

Poor co-ordination between stakeholders

- Engage with stakeholders early with detailed planning²
- Ensure co-ordination between health agencies, government agencies and international partners²
- Ensure clear, consistent community communication strategy²

Vaccine hesitancy, scepticism or resistance

- Adapt rollout to tackle specific concerns and barriers to access²
- Integrate vaccination campaigns to decrease time burden on communities and HCWs²
- Recruit local HCW and engage trusted community figures^{2,3}

