touchEXPERT OPINIONS®

New guideline-based strategies for improving outcomes in patients with NTM-LD

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME[®] to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health and touchIME[®] of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health and touchIME[®] activities
- USF Health and touchIME[®] accept no responsibility for errors or omissions

Can we reduce time to diagnosis and initiation of treatment?

Dr Juzar Ali

Professor of Medicine LSU Health Sciences Center New Orleans, LA, USA

What is the incidence and prevalence of NTM-LD and how does it vary at a geographic and individual level?

Global distribution of respiratory NTM isolates

8%

3%

1%

8% 15% 4% 71% MAC M. kansasii M. xenopi M. malmoense RGM M. gordonae **Other SGM**

Australia*

*Data are specifically for the state of Queensland.

MAC, *Mycobacterium avium* complex; NTM, nontuberculous mycobacterial; RGM, rapid-growing mycobacteria; SGM, slow-growing mycobacteria. Hoefsloot W, et al. *Eur Respir J.* 2013;42:1604–13.

50%

3%

33%

5%

1%

7%

What is the link between bronchiectasis and NTM-LD?

Bronchiectasis and NTM-LD

Bronchiectasis is the primary underlying pathophysiological derangement in patients with NTM-LD, with a cascade of recurrent inflammation and concomitant infection

Chalmers JD, et al. Nat Rev Dis Primers. 2018;4:45.

What are the common pulmonary comorbidities associated with NTM-LD?

Common comorbidities associated with NTM-LD

COPD¹

- Most frequently observed comorbidity with NTM-LD
- Causes increased disease severity and more exacerbations per year, as well as higher rates of mortality
- Underlying COPD makes treatment of NTM-LD extremely difficult and cure rates are low

Asthma²

1.7% of patients with difficult-to-control asthma have NTM-LD as a comorbidity

Lung cancer¹

- Incidences of NTM-LD and cancer are increasing, and association between them is recognized but not well characterized
- Given that their clinical and radiologic symptoms can be similar, when treating NTM-LD consideration should be made regarding the concurrence of malignancies

IPF¹

- Patients with IPF have significantly higher rates of NTM-LD
- NTM-LD exacerbates IPF
- Treatment for IPF often includes immunosuppressive drugs, steroids and DMARD agents, which can increase the risk for NTM-LD infection and mortality

COPD, chronic obstructive pulmonary disease; DMARD, disease-modifying antirheumatic drug; IPF, idiopathic pulmonary fibrosis; NTM-LD, nontuberculous mycobacterial lung disease. 1. Ali J. *Expert Rev Respir Med*. 2021;15:663–73; 2. Marras TK, et al. *Euro Resp J*. 2016;48:928–31. What considerations should clinicians have when performing sputum collection and microbiological assessment?

Key factors in sputum collection and evaluation

Airway clearance	 Dual purpose – therapeutic and diagnostic; may be required before sputum collection Can comprise of traditional chest physiotherapy or mechanical/pharmacological intervention
Collection	 To ensure the validity of each sputum evaluation, sufficient quality and quantity is required Consult with testing laboratory to establish their sample requirements, collection technique standards and frequency of collection
Rejection criteria	 Sputum collection rejection criteria include: <3 mL of sputum sputum that is predominately saliva dry swabs samples >7 days from date of collection unrefrigerated samples
Confirmation	 Confirmation of two positive sputum cultures is an important indicator of NTM-LD Isolation of more than one positive culture of the same species from at least two sputum cultures is recommended The identified NTM species determines the number of required cultures
Follow up	 Sputum should be collected monthly until two or three consecutive cultures are negative for NTM bacteria

rar

•

What are the benefits of radiological assessment in patients with NTM-LD?

Bronchiectasis seen in a patient with MAC infection and disease: multiple presentation and multi-focal

Cylindrical bronchiectasis

MAC, *Mycobacterium avium* complex. Image supplied courtesy of Dr Ali.

• Cavitary disease seen with MAC disease

Bronchiectasis with cavities

MAC. *Mycobacterium avium* complex. Image supplied courtesy of Dr Ali. • What do clinicians need to know about new guideline-based treatment options to individualize treatment goals?

Dr Doreen Addrizzo-Harris

Professor of Medicine NYU Grossman School of Medicine New York, NY, USA

Should patients with NTM-LD be treated with antimicrobial therapy or is watchful waiting preferred?

Clinical factors to consider before initiating antimicrobial therapy

Infecting species

- Virulence
- Responsiveness to antimicrobial therapy

Individual patient priorities

- Immune suppression
- Quality of life
- Mild signs and symptoms of disease
- Adverse effects of therapy
- Benefits of antimicrobial therapy
- Potential for recurrence
- Comorbidities

Factors associated with relatively poor prognosis

- Cavitary disease
- Low body mass index
- Low albumin
- Elevated inflammatory
 markers

The decision to initiate antimicrobial therapy for NTM-LD should be individualized based on a combination of clinical factors

Should drug-susceptibility testing be performed before initiating treatment?

Drug susceptibility testing for NTM-LD¹

- CLSI recommendation to perform drug susceptibility testing by **broth microdilution**
- Drug susceptibility testing of primary isolates and relapse/failure isolates should be performed if the NTM isolate is clinically significant

M. avium complex

- Clear correlation between baseline macrolide susceptibility of the causative strain and the outcome of treatment with macrolide/ethambutol/rifampin
- Resistance is defined as a MIC:
 - \geq 32 µg/mL for clarithromycin²
 - ≥64 µg/mL for parenteral amikacin
 - ≥128 µg/mL for amikacin liposome inhalation suspension (ALIS)

M. kansasii

- Rifampin and clarithromycin are the key drugs to test for potential resistance
- Resistance is defined as a MIC:
 - >2 µg/mL for rifampin
 - \geq 32 µg/mL for clarithromycin

M. abscessus

- Evident association for macrolides and amikacin between *in vitro* drug susceptibility and *in vivo* outcome of treatment
- Clofazimine shows *in vitro* activity, acts synergistically with amikacin and macrolides, and prevents the emergence of amikacin-resistant *M. abscessus in vitro*

CLSI, Clinical and Laboratory Standards Institute; MIC, minimum inhibitory concentration; NTM, nontuberculous mycobacteria; NTM-LD, NTM lung disease. 1. Daley CL, et al. *Eur Respir J.* 2020;56:2000535; 2. Nie W, et al. *Biomed Res Int.* 2015;2015:506598. What are the treatment options for patients with macrolide-susceptible MAC NTM-LD?

Initial treatment of macrolide-susceptible MAC NTM-LD

A three-drug regimen including a macrolide is recommended over a three-drug regimen without a macrolide

Azithromycin-based treatment regimens in preference to clarithromycin-based regimens are recommended

- In patients with noncavitary nodular/bronchiectatic disease, a macrolide-based regimen three times a week for at least 12 months after culture conversion is recommended
- In patients with cavitary disease, a daily macrolide-based regimen for at least 12 months after culture conversion is recommended

For patients with cavitary or advanced/severe bronchiectatic disease, parenteral amikacin or streptomycin is recommended to be included in the initial treatment regimen

Also recommended for patients with macrolide-resistant MAC pulmonary disease

What are the treatment options for MAC NTM-LD for patients who have failed previous therapy?

Recommended treatment regimens for refractory MAC NTM-LD

Refractory disease is defined as remaining sputum culture positive after 6 months of guideline-based therapy

Amikacin liposome inhalation suspension (ALIS) has been shown to improve culture conversion when added to guideline-based therapy in treatment-refractory patients with MAC NTM-LD

*Alternative drugs for patients who are intolerant of or whose isolate is resistant to first-line drugs include clofazimine, moxifloxacin, and linezolid. Some experts would consider bedaquiline or tedizolid. †Consider for cavitary, extensive nodular bronchiectatic disease or macrolide-resistant MAC. MAC, *M. avium* complex; NTM-LD, nontuberculous mycobacterial lung disease. Daley CL, et al. *Eur Respir J.* 2020;56:2000535.

What are the treatment options for patients with non-MAC NTM-LD?

. Treatment regimens for non-MAC NTM-LD

M. kansasii*

M. xenopi

Rifampin + ethambutol + azithromycin	Daily	Rifampin + ethambutol, and either a macrolide and/or a fluoroquinolone	Daily
Rifampin + ethambutol + azithromycin	Three times weekly	Rifampin + ethambutol + amikacin and either a macrolide and/or	Three times weekly
Rifampin + ethambutol + isoniazid	Daily	a fluoroquinolone™	
	M.	abscessus	
Initial phase		Continuation phase	
 Parental: amikacin, imipenem (or cefoxitin) and tigecycline Oral: azithromycin, clofazimine and linezolid 	Daily	 Azithromycin, clofazimine, linezolid and inhaled amikacin 	Daily

*In patients with rifampin-resistant *M. kansasii* or intolerance to one of the first line antibiotics, a fluoroquinolone (e.g. moxifloxacin) can be used as part of a second-line regimen. †Consider for cavitary, extensive nodular bronchiectatic disease or macrolide-resistant strains. Daley CL, et al. *Eur Respir J.* 2020;56:2000535.

How can we manage adverse events to improve adherence?

Dr Kevin Winthrop

Professor of Infectious Diseases and Public Health Oregon Health & Science University Portland, OR, USA

What do real-word data tell us about adverse events leading to treatment discontinuation?

Real-world studies of treatment outcomes in NTM-LD

US population-based data of discontinuation after 12 months of multi-drug antibiotic therapy for MAC NTM-LD¹

- Azithromycin + ethambutol + rifamycin: 84.1%
- Clarithromycin + ethambutol + rifamycin: 86.3%
- Macrolide + ethambutol + rifampin: 84.0%
- Macrolide + ethambutol + rifabutin: 90.6%
- Azithromycin + ethambutol + rifampin: 83.3%
- Clarithromcyin + ethambutol + rifabutin: 91.3%

Study at six NTM treatment centres evaluating the tolerability of linezolid in patients with NTM²

- Proportion of patients developing linezolid-attributable AEs was similar between:
 - patients using and not using rifampin (33% vs 48%)
 - patients with MAC and *M. abscessus* (37% vs 51%)
- Treatment discontinued in 87% of patients with linezolid-attributable AEs at a median of 20 weeks

Observational, retrospective study of patients with NTM-LD from a regional TB reference centre³

- At median follow-up of 31 months:
 - AEs occurred in 37.6% of patients
 - treatment halted in 13.5% of patients
- The main reason for discontinuation of treatment was drug intolerance

AE, adverse event; MAC, *Mycobacterium avium* complex; NTM, nontuberculous mycobacteria; NTM-LD, NTM lung disease; TB, tuberculosis. 1. Ku J, et al. Presented at: IDWeek 2021, Virtual, On demand, 2021. Abstr 192; 2. Winthrop K, et al. *Eur Respir J*. 2015;45:1177–9; 3. Aliberti S, et al. *Respir Med*. 2020;164:105899. What key points should clinicians discuss with patients regarding possible adverse events before initiating therapy?

Potential adverse reactions to antimicrobial therapy for NTM-LD

Macrolides (azithromycin)	 Gastrointestinal Tinnitus/hearing loss Hepatotoxicity Prolonged QTc 	Rifampin	 Hepatotoxicity Cytopenias Hypersensitivity Orange discolouration of secretions 	Ethambutol	Ocular toxicityNeuropathy
Amikacin, streptomycin, tobramycin	 Vestibular toxicity Ototoxicity Nephrotoxicity Electrolyte disturbances 	Linezolid	Peripheral neuropathyOptic neuritisCytopenias	Amikacin liposome inhalation suspension (ALIS)	 Dysphonia Vestibular toxicity Ototoxicity Nephrotoxicity Cough Dyspnea
Rifabutin	 Hepatotoxicity Cytopenias Uveitis Hypersensitivity Orange discolouration of secretions 	Isoniazid	 Hepatitis Peripheral neuropathy 	Fluoroquinolone	 Prolonged QTc Hepatotoxicity Tendinopathy

QTc, corrected QT interval; NTM-LD, nontuberculous mycobacterial lung disease. Daley CL, et al. *Eur Respir J.* 2020;56:2000535.

How should clinicians manage adverse events when treating patients with macrolide-susceptible MAC NTM-LD?

Monitoring recommendations for potential adverse reactions to antimicrobial therapy for NTM-LD

Clinical monitoring should be performed for all antimicrobial therapies

BUN, blood urea nitrogen; NTM-LD, nontuberculous mycobacterial lung disease. Daley CL, et al. *Eur Respir J.* 2020;56:2000535.

How should clinicians manage adverse events when treating patients with treatment-refractory MAC **NTM-LD who are receiving** treatment with ALIS?

Safety and tolerability of amikacin liposome inhalation suspension (ALIS) during 12-month open-label extension trial

ALIS-naïve cohort

Grade ≥3 TEAEs	40.0%
TEAE in ≥10% of patients	
Dysphonia	43.3%
Cough	35.6%
Dyspnea	17.8%
Fatigue	14.4%
Hemoptysis	12.2%
Infective exacerbation of bronchiectasis	12.2%
Nausea	10.0%
Diarrhoea	10.0%
Tinnitus	6.7%
TEAE of pulmonary exacerbation*	32.2%
TEAE leading to discontinuation of ALIS	24.4%
TEAE leading to discontinuation of GBT	8.9%
TEAE leading to discontinuation of ALIS and GBT	5.6%

*Pulmonary exacerbation was defined based on the investigators' best clinical judgment. GBT, guideline-based therapy; TEAE, treatment-emergent adverse event. Winthrop KL, et al. *Ann Am Thorac Soc.* 2021;18:1147–57.

Grade ≥3 TEAEs 21.9% TEAE in $\geq 10\%$ of patients Hemoptysis 15.1% Nasopharyngitis 13.7% Cough 12.3% 12.3% Dyspnea Tinnitus 1.4% TEAE of pulmonary exacerbation* 30.1% TEAE leading to discontinuation of ALIS 8.2% TEAE leading to discontinuation of GBT 5.5% TEAE leading to discontinuation of ALIS and GBT 1.4%

Prior-ALIS cohort

How should clinicians manage adverse events when treating patients with non-MAC NTM-LD?

Adverse events for common non-MAC treatment regimens

(M. abscessus	М. хепорі	
Treatment	Parenteral multidrug treatment regimen	Rifampin, ethambutol, and either a macrolide and/or a fluoroquinolone	Treatment
Adverse events	Tinnitus/hearing loss, hepatotoxicity, gastrointestinal and renal toxicity	Ocular toxicity and neuropathy (tendinopathy if using a fluoroquinolone)	Adverse events
Monitoring	Routine toxicity monitoring and baseline and intermittent audiometry testing	Regular monitoring of blood glucose and routine toxicity monitoring test	Monitoring
(M. kansasii		
Treatment	<i>M. kansasii</i> Rifampin, ethambutol, and either isoniazid or macrolide	Monitoring frequency for drug-re	elated
Treatment Adverse events	 M. kansasii Rifampin, ethambutol, and either isoniazid or macrolide Peripheral/optic neuropathy and transient increases in levels from liver function tests 	Monitoring frequency for drug-re AEs should be individualized on o of therapy, age, comorbiditie	elated choice es,

